442. Higher Complex Fluorides of Tungsten.

By G. B. HARGREAVES and R. D. PEACOCK.

Work on the complex fluorides of tungsten has been continued; the salts K₂WF₈, K₃WF₈, RbWF₇, CsWF₇, and CsWOF₅ have been obtained and characterised.

WORK with elementary fluorine and molybdenum carbonyl¹ yielded two lower fluorides of molybdenum, the pentafluoride MoF_5 and the tetrafluoride MoF_4 . Starting from a parallel investigation with tungsten carbonyl, we have found several compounds in which tungsten apparently exhibits a high co-ordination number with respect to fluorine.

Ruff found that molybdenum and tungsten hexafluorides are absorbed by the alkali fluorides, and Cox, Sharp, and Sharpe² obtained definite compounds of the general formulæ M_2MoF_8 and M_2WF_8 , although, as Clark and Emeléus³ showed that dry alkali fluorides do not absorb the hexafluorides we reopened the subject. We now report the preparation of complex fluorides of sexivalent tungsten; these are K_2WF_8 , $RbWF_7$, and $CsWF_7$.

Peacock, Proc. Chem. Soc., 1957, 59.
 Cox, Sharp, and Sharpe, J., 1956, 1242.
 Clark and Emeléus, J., 1957, 4778.

In addition, $CsWOF_5$ and K_3WF_8 were characterised. We believe we have also solved some earlier problems.

EXPERIMENTAL

Attempted Preparation of Lower Tungsten Fluorides.—(a) Fluorine diluted with nitrogen was allowed to interact with resublimed tungsten carbonyl under conditions similar to those described for molybdenum carbonyl.¹ There is no action below 0°; above this temperature intermittent combination takes place and tungsten hexafluoride WF₆ and carbonyl fluoride COF₂ are formed: W(CO)₆ + 9F₂ \longrightarrow WF₆ + 6COF₂.

(b) Iodine pentafluoride, prepared from the elements and purified by trap-to-trap distillation in a vacuum, was condensed on tungsten carbonyl. Iodine was liberated, carbon monoxide was evolved, and the presence of tungsten hexafluoride was inferred from its physical properties. All the products were easily volatile, and no lower fluorides were found:

$$5W(CO)_6 + 6IF_5 \longrightarrow 5WF_6 + 30CO + 3I_2$$
.

Complex Fluorides of Tungsten.—Tungsten carbonyl was sublimed in a high vacuum. Tungsten hexafluoride and iodine pentafluoride were prepared from the elements and sublimed or distilled in a vacuum. The alkali iodides and fluorides were carefully dried, the former at 100° and the latter by heating them to incipient fusion.

(1) Reaction of Tungsten Carbonyl and Alkali Iodide with Iodine Pentafluoride.—(a) Mixture $W(CO)_6$: KI = 1:1. Warmed together, these produced dipotassium octafluorotungstate(VI) K_2WF_8 , a white solid readily freed from iodine and excess of iodine pentafluoride by heating it in a vacuum at 150° for 30 min. (Found: W, 44·1; F, 36·3%; equiv., 415. K_2WF_8 requires W, 44·4; F, 36·7%; equiv., 415): $5W(CO)_6 + 10KI + 8IF_5 = 5K_2WF_8 + 9I_2 + 30CO$. It is stable in dry air but decomposes in a moist atmosphere with rapid attack on glass containers. It is completely and easily soluble in water to a solution which smells of hydrofluoric acid. Debye X-ray photographs, detailed below, show a cubic unit cell with a = 10.03 Å.

(b) Mixture $W(CO)_6$: CsI = 1:1. Although the white solid from this reaction had similar properties to the above potassium salt, and a composition near to the formula Cs_2WF_8 , Debye X-ray photographs disclosed a phase isostructural with that ⁴ of $CsWF_6$ indicating the probable presence of the oxyfluoride $CsWOF_5$ (see below) (Found: W, 30.7; F, 26.9%. Calc. for Cs_2WF_8 : W, 30.6; F, 25.3%. Calc. for a mixture of $CsWOF_5: Cs_2SiF_6 = 2:1:$ W, 29.1; F, 24.1%).

(c) Mixture $W(CO)_6: NaI = 1:1$. Under rigorously dry conditions tungsten was not found in the product, a result in conformity with the behaviour of tungsten hexafluoride described below. It is difficult to dry sodium iodide thoroughly without slight oxidation or hydrolysis, so products were sometimes obtained with a composition approximately Na_2WF_8 , but the Debye X-ray photographs showed a phase isostructural with that of $NaWF_6$, which was most probably the oxyfluoride $NaWOF_5$ (Found: W, 49.3; F, 38.1. Calc. for Na_2WF_8 : W, 48.2; F, 39.8%. Calc. for a mixture $NaWOF_5: Na_2SiF_6 = 2:1:$ W, 44.6; F, 36.9%.

(d) Mixture $W(CO)_6$: KI = 2:1. Treatment of this mixture with iodine pentafluoride yielded a white solid which could be freed from iodine and iodine pentafluoride by heating it in a vacuum at 150° for 30 min. This was tripotassium octafluorotungstate(v) (Found: W, 40.9; F, 38.9%; equiv., 431. K₃WF₈ requires W, 40.6; F, 40.1%; equiv., 453), which is stable in dry air but decomposed by moist air. Its aqueous solution is pale green, unlike the blue or purple solution of potassium hexafluorotungstate(v) KWF₆. Debye X-ray photographs show a rhombohedral unit cell with a = 9.75 Å and $\alpha = 86.4^{\circ}$. (Molybdenum appears to form a similar compound which is still under investigation.)

(e) $Mixture W(CO)_6: NaI = 2:1$. Again quinquevalent tungsten was produced, but Debye X-ray photographs showed the product to be a mixture containing NaWF₆. The material dissolved in water to give the blue colour characteristic of the WF₆⁻ ion.

(2) Reaction of Tungsten Hexafluoride and Alkali Fluoride.—(a) In absence of solvent. On rigorously dried material our results agree with those of Clarke and Emeléus, who found there was no combination. With slightly moist potassium fluoride, however, there was rapid reaction in the cold; the impure product contained HF and was not amenable to X-ray examination in glass. It had a composition near to K_2WF_8 (Found: W, 39.0; F, 35.3%). Cæsium fluoride, also slightly moist, gave a product containing 24.1% of tungsten; according to the Debye X-ray photographs it contained CsWOF₅.

(b) In the presence of iodine pentafluoride. With dry potassium fluoride dipotassium octafluorotungstate K_2WF_8 was formed (Found: W, 44.4; F, 36.8%), a conclusion supported by Debye X-ray photographs. So far we have been unable to dry either rubidium or cæsium fluorides to give a stoicheiometric product. The moist salts yielded complex oxyfluorides, isostructural with RbWF₆ and CsWF₆, of which the *cæsium oxypentafluorotungstate*(VI), a white solid stable in dry air, was analysed (Found: W, 43.2; F, 23.1%. CsWOF₅ requires Cs, 42.0; F, 21.7%). Our preparation attacked glass slowly; we ascribe this to HF or moisture and do not believe it is characteristic of the pure compound. The salt dissolves in water to a colourless solution.

(3) Reaction of Tungsten Hexafluoride and Alkali Iodide in the Presence of Iodine Pentafluoride.—Alkali iodides were used because, except for lithium and sodium iodides, they are more easily purified and dried than the fluorides. With potassium iodide, dipotassium octafluorotungstate was formed (Found: W, 44.3; F, 36.6%). Debye X-ray photographs supported the conclusion reached from the analysis. Neither rubidium nor cæsium iodides gave a product corresponding in composition to that from potassium iodide, but gave rubidium heptafluorotungstate(VI) and cæsium heptafluorotungstate(VI) (Found: W, 45.3; F, 33.4%; equiv., 389. RbWF₇ requires W, 45.7; F, 33.1%; equiv., 402. Found: W, 40.0; F, 29.5%; equiv., 460. CsWF₇ requires W, 40.0; F, 28.9%; equiv., 460). Both heptafluorotungstates resemble K₂WF₈ in appearance and properties: $5WF_6 + 5RbI + IF_5 \longrightarrow 5RbWF_7 + 3I_2$; $5WF_6 + 5CsI + IF_5 \longrightarrow 5CsWF_7 + 3I_2$. Debye X-ray photographs, detailed below, show CsWF₇ to have a cubic unit cell with a = 5.49 Å. The three fluoro-complexes of sexivalent

TABLE 1.

		K ₂ WF ₈			RbWF ₇		
		~	$\sin^2\theta \times 10^4$	$\sin^2\theta \times 10^4$	C	$\sin^2\theta \times 10^4$	$\sin^2\theta \times 10^4$
N	Indices	Intensity	found	calc.	Intensity	found	calc.
4	200	s	332	318	S	312	304
5	210	w	414	397	ms	393	380
8	220	vs	671	635	vs	621	608
9	300	vw	727	714	ms	698	684
	221						
10	310	vvw	829	794	<u> </u>		
12	222	vw	969	953	vw	923	911
13	320	vvw	1055	1032	vw	1006	987
14	321	vw	1135	1112	vw	1068	1063
16	400	ms	1296	1270	ms	1227	1215
17	410	w	1373	1350	vw	1302	1291
	322						
20	420	w	1617	1588			_
21	421	S	1690	1667	\mathbf{ms}	1609	1595
24	422	vs	1928	1906	vs	1840	1823
25	430	w	1988	1985	vw	1918	1899
	500						
26	511	vw	2085	2064	vw	1994	1975
	431						
29	520	ms	2325	2303	w	2222	2203
	432						
30	521	vw	2409	2382	vw	2292	2279
32	440	w	2566	2541	w	2445	2430
33	522	w	2648	2620	vw	2525	2506
	441						070/
36	600	w	2877	2858	vw	2755	2734
	442					0000	0010
37	610	w	2963	2938	vw	2829	2810
40	620	ms	3203	3176	ms	3052	3038
41	443 621	vs	3281	3255	ms	3130	3114
	540			0005		0015	
42	541	w	3369	3335	vw	3215	3190
45	630	w	3601	3073	w	3433	3418
40	54Z		9609	2659		2514	2404
40	631	vw	3083	3052	V W	3658	3646
48	444		2017	3801	V W	3745	3722
49	700	w	9917	9091	w	0110	0122
	032						

				TABLE 1.	(Continu	ied.)		
				K ₂ WF ₈			RbWF,	
N	Ind	lices	Intensity	$\sin^2\theta \times 10^4$ found	$ \frac{\sin^2\theta \times 1}{\operatorname{calc.}} $	Intensit	$\sin^2\theta \times 10^4$ y found	$\frac{\sin^2\theta \times 10^4}{\text{calc.}}$
50	543	710	vw	4015	3970	vvw	3814	3798
53	7	20	w	4235	4208	w	4065	4025
54	552 ⁶	41 721	vw	4320	4288	vw	4134	4101
56	6	$633 \\ 42$	ms	446 5	4446	s	4275	4253
61	6 6	50 43	w	4862	4843	vw	4641	4633
62	7	32 51	w	495 5	4923	vw	4735	4709
65	8	10	ms	5183	5160	w	4948	4937
66	8	11	w	5281	5240	vw	5050	5013
69	8	21	ms	5499	5479	w	5259	5241
70	6	42 53	vw	5586	5558	vw	5338	5317
73	8	30 61	w	5817	5796	—		—
74	743	831 750	vw	5908	5875			
77	8	32 54	ms	6142	6114	w	5861	5848
81	744	900 941	ms	7456	6431	vw	6193	6152
84	8	42				w	6380	6380
86	655	$921 \\ 761$	ms	6859	6828	_		
89	843 762	$\begin{array}{c} 922 \\ 850 \end{array}$	w	7084	7067			
90	754	930 851	ms	7168	7146			
93 94	8 91	52 32	VVW	$\begin{array}{c} 7403 \\ 7485 \end{array}$	$7384 \\7464$			_
08	770	63 041		7704	7781		_	
101	10.10	853	~	0041	0010		T C T A	7670
101	942	764	S	8041	8019	w	7074	1010
105	10	·21 54	S	8357	8337	_		_
109	10 80	.30 63	ms	8664	8654			
110	10.31	$952 \\ 765$	ms	8735	8734			Entering - W
113	10.32	944 870	ms	8968	8972			
$115 \\ 117$	9) 10:41	53	ms	9096 0206	9131		9910	9910
117	10.41	900 872	ms	9290 9315	9290	vw	8810	8810
		CsW	F,		<u> </u>		CsWF7	
			$\sin^2\theta$	$\sin^2 \theta$			$\sin^2\theta$	$\sin^2\theta$ $\times 10^4$
N	Indices	Intensity	found	calc.	Ν	Indices In	tensity found	calc.
1	100	w	279	273	18	411	w 4932	4910
2	110	vs	559	546	00	330		FARG
4 6	200 211	w s	1105	1091	20 22	420 332	vw 0480 vvw 6027	0400 6002
8	220	w	2205	2182	26	431	w 7108	7093
10	310	ms	2758	2728		500		 .
12 14	222 391	vw	3306	3274	30 24	521 520	vw 8209	8184
16	400	vvw	4393	4365	94	000	••• • • 5 210	3410

tungsten, and the complex oxyfluoride, are all slightly paramagnetic (μ_{eff} ${\sim}0{\cdot}2$ B.M.) at room temperature.

Analysis.—Tungsten. The complexes were dissolved in water (quinquevalent tungsten if present was oxidised with nitric acid) and the tungsten was precipitated by the cinchonine-tannin method and weighed as WO_3 after ignition of the precipitate at 800°.

Fluorine. The compound was broken down with sulphuric acid and fluorine determined in the fluorosilicic acid distillate by precipitation as lead chlorofluoride PbClF and estimation of the chloride equivalent by the Volhard method.

X-Ray Photography.—Since the compounds were too hygroscopic for transference in a dry-box, the thin-walled Pyrex capillary of about 0.5 mm. diameter was sealed to the preparation line. The compound was powdered by shaking it with a number of glass beads, and was then shaken into the capillary. A 9-cm. camera and Co-K α radiation in conjunction with an iron filter were used. A 19-cm. camera gave no better photographs. For results, see Table 1.

Densities.—Carbon tetrachloride was carefully dried by distillation over phosphoric oxide. A 2 ml. density bottle with a stopper was used. About 1 g. of material was required for each determination. The results are presented in Table 2.

DISCUSSION

The results show the necessity of thoroughly drying the reactants and emphasise the diagnostic value of X-ray photography. The earlier failure to prepare complex rubidium and cæsium fluorotungstates(VI) from the carbonyl reaction may well be due to the difficulty of freeing iodine pentafluoride from HF and SiF_4 . Complex oxyfluorides are clearly formed preferentially with even small quantities of moisture or hydrogen fluoride present, except perhaps when the alkali metal is potassium.

If sufficient alkali iodide is present when tungsten carbonyl interacts with iodine pentafluoride, quinquevalent complex fluorides are formed. We do not know why this is so, but only suggest that with large amounts of free iodine the increase in "basicity" is sufficient to stabilise W^{5+} in iodine pentafluoride. It is noteworthy that whereas sodium iodide gives a hexafluorotungstate(v) under these conditions, ^{cf. 4} potassium iodide gives an octafluorotungstate(v) K_3WF_8 .

Sexivalent complex fluorides of tungsten are best prepared by the addition of excess of tungsten hexafluoride to alkali iodide in presence of iodine pentafluoride. We agree with Clark and Emeléus that rigorously dried alkali-metal fluorides do not combine appreciably with tungsten hexafluoride and our work also indicates that a solvent such as iodine pentafluoride is necessary to promote the reaction.

TABLE 2.

	Unit cell size (Å)	Density	Formula units	Density calc. from
K.WF.	$a_0 = 10.03$ (Cubic)	4.10	6	4.09
RbWF.	$a_0 = 10.00$ (cubic) $a_0 = 10.27$	4.14	(6.76)	(4.14)
CsWF,	$a_0 = 5.49$,	4.54	1	4.61
NaWOF ₅	$a_0 = 8.17$,	_	_	
CsWOF ₅	$a_0 = 5.31$; $\alpha = 95.5^\circ$ (Rhombohedral)) —		
$K_{3}WF_{8}$	$a_0 = 9.75; \alpha = 86.4^{\circ}$			

Debye X-ray photographs show that the three sexivalent complex fluorides have simple cubic symmetry, but that whereas K_2WF_8 and $RbWF_7$ seem to be closely related in structure $CsWF_7$ stands by itself. Density measurements indicate that the unit cell of K_2WF_8 contains 6 formula units, and that of $RbWF_7$ about 6.8 formula units (Table 2). In each case, therefore, the unit cell probably contains 48 fluorine atoms. Without a complete set of intensity measurements we cannot be specific about their structures, but it is reasonable to imagine the 48 fluorine atoms to be divided into 8 octahedrally arranged sets of 6 with statistical distributions of tungsten and alkali-metal atoms between them. $CsWF_7$ contains only one formula unit in the unit cell and the absent reflections suggest

⁴ Hargreaves and Peacock, J., 1957, 4212.

a cæsium chloride arrangement of cæsium and tungsten atoms; nothing can be said about the positions of the fluorine atoms. Since the structures of the salts depend markedly on the size of the alkali-metal atom, the absence of a stable sodium fluorotungstate(VI) is scarcely surprising.

The chief interest in the complex sexivalent fluorotungstates lies in the covalency of the tungsten atom. Octacovalent tungsten is well known in the quadrivalent octacyanotungstates $M_4W(CN)_8$ and osmium, which lies in the same period of the Periodic Table, forms an octafluoride OsF_8 . Whether tungsten has a covalency greater than six in our compounds is uncertain, although in the cæsium salt a covalency of seven seems likely.

We thank Professor G. Wilkinson for his encouragement, Mining and Chemical Products Limited for a gift of cæsium salts, Imperial Chemical Industries Limited, General Chemicals Division, for the use of a fluorine cell, and the Department of Scientific and Industrial Research for a maintenance grant (to G. B. H.).

IMPERIAL COLLEGE, LONDON, S.W.7.

[Received, February 14th, 1958.]
